skip to main content


Search for: All records

Creators/Authors contains: "Saunders, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Previous studies have shown that algal-derived dissolved organic matter (DOM) has a strong influence on the formation of disinfection byproducts (DBPs) during the treatment of drinking water. In the summer of 2010, we evaluated the role of nitrogen and phosphorus loading and phytoplankton abundance as drivers of the concentrations and quality of DOM and the associated DBP formation in 30 reservoirs in the mountains and plains of the State of Colorado. Optical properties such as Specific Ultraviolet Absorbance at 254 nm (SUVA 254 ) and fluorescence spectroscopy were used to characterize DOM quality. Nutrient concentrations such as total nitrogen were also assessed and were associated with high concentrations of chlorophyll a (Chl-a). In turn, high total organic carbon (TOC) concentrations were associated with high concentrations of Chl-a, and the DOM in these reservoirs had a fluorescence signature indicative of contributions from phytoplankton growth. The reservoirs with TOC concentrations above 4 mgC/L were predominantly located in the plains and many are impacted by agricultural runoff and wastewater discharges, rather than in the mountains and are characterized by warm water conditions and shallow depths. For a subset of fourteen reservoirs, we characterized the composition of the phytoplankton using a rapid imaging microscopy technique and observed a dominance by filamentous Cyanobacteria in reservoirs with TOC concentrations above 4 mgC/L. The combination of high TOC concentrations with microbial characteristics resulted in high potential for production of two major classes of regulated DBPs, trihalomethanes and haloacetic acids. While fluorescence spectroscopy was useful in confirming the contribution of phytoplankton growth to high TOC concentrations, evaluation of predictive models for DBP yields found that all equally predictive models included SUVA 254 and some of these models also included fluorescence indices or logTOC. These findings provide a limnological context in support of the recent guidelines that have been implemented for protection of high-quality drinking water supplies in the State of Colorado. 
    more » « less
  2. null (Ed.)
    Pumping groundwater from arsenic (As)-contaminated aquifers exposes millions of people, especially those in developing countries, to high doses of the toxic contaminant. Previous studies have investigated cost-effective techniques to remove groundwater arsenic by stimulating sulfate-reducing bacteria (SRB) to form biogenic arsenian pyrite. This study intends to improve upon these past methods to demonstrate the effectiveness of SRB arsenic remediation at an industrial site in Florida. This study developed a ferrous sulfate and molasses mixture to sequester groundwater arsenic in arsenian pyrite over nine months. The optimal dosage of the remediating mixture consisted of 5 kg of ferrous sulfate, ~27 kg (60 lbs) of molasses, and ~1 kg (2 lbs) of fertilizer per 3785.4 L (1000 gallons) of water. The remediating mixture was injected into 11 wells hydrologically upgradient of the arsenic plume in an attempt to obtain full-scale remediation. Groundwater samples and precipitated biominerals were collected from June 2018 to March 2019. X-ray diffraction (XRD), X-ray fluorescence (XRF), electron microprobe (EMP), and scanning electron microscope (SEM) analyses determined that As has been sequestered mainly in the form of arsenian pyrite, which rapidly precipitated as euhedral crystals and spherical aggregates (framboids) 1–30 μm in diameter within two weeks of the injection. The analyses confirmed that the remediating mixture and injection scheme reduced As concentrations to near or below the site’s clean-up standard of 0.05 mg/L over the nine months. Moreover, the arsenian pyrite contained 0.03–0.89 weight percentage (wt%) of sequestered arsenic, with >80% of groundwater arsenic removed by SRB biomineralization. Considering these promising findings, the study is close to optimizing an affordable procedure for sequestrating dissolved As in industry settings. 
    more » « less